
IPN Progress Report 42-171 November 15, 2007

Low-Density Parity-Check Code Design Techniques
to Simplify Encoding

J. M. Perez1 and K. Andrews2

This work describes a method for encoding low-density parity-check (LDPC)
codes based on the accumulate–repeat–4–jagged–accumulate (AR4JA) scheme, us-
ing the low-density parity-check matrix H instead of the dense generator matrix G.
The use of the H matrix to encode allows a significant reduction in memory con-
sumption and provides the encoder design a great flexibility.

Also described are new hardware-efficient codes, based on the same kind of pro-
tographs, which require less memory storage and area, allowing at the same time a
reduction in the encoding delay.

I. Introduction

The NASA proposal for the Consultative Committee for Space Data Systems (CCSDS) experimental
specification CCSDS 131.1-O-2 [1] describes a set of low-density parity-check (LDPC) codes for near-
Earth and deep-space applications. That experimental specification describes two kinds of codes. The
second one is a set of accumulate–repeat–4–jagged–accumulate (AR4JA) codes, which have characteristics
particularly well suited to deep-space applications. One drawback of these codes is that, unlike the codes
in other standards (such as Digital Video Broadcasting (DVB)-S2 [3], 802.11n [4], and 802.16e), the parity-
check matrices have not been defined to be encoding-efficient, but to improve the bit-error rate (BER)
performance as much as possible. This fact allows the AR4JA codes to show better BER performance
than some other standard codes. On the other hand, it makes necessary the use of dense generator
matrices to encode the AR4JA codes defined in the proposal. In Figs. 1 and 2, an example parity-check
matrix, H, and corresponding generator matrix, G, are displayed to show the difference between these
two in terms of sparseness. The example in these figures is for a code of rate 1/2 with M = 8 and k = 64,
where M is the size of the circulants that form the H matrix, and k is the information block length.
The matrices shown accommodate n = 160 code symbols, but the last fifth of these are punctured (not
transmitted over the channel) to yield a rate 1/2 code. We call this Code 1.

The objective of this work is to show that, by doing some simple operations that do not alter the BER
performance of the proposed AR4JA codes, a sparse H matrix can be used for encoding.

1 Microelectronics Engineering Group of the University of Cantabria, Spain, visiting scholar in the Communications Systems
and Research Section.

2 Communications Systems and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration, and the University of Cantabria
through the Spanish Ministerio de Educación y Ciencia (MEC) project TEC-2005-03301/MIC.

1

90

0

Fig. 1. Parity-check matrix for Code 1.

20 40 60 80 100 120 140 160

80

70

60

50

40

30

20

10

0

0

Fig. 2. Systematic generator matrix for Code 1.

20 40 60 80 100 120 140 160

60

50

40

30

20

10

0

In Section II, we describe a modification of the H matrix (without modifying the code) required to
encode the current AR4JA codes using the sparse H matrix. In Section III, an alternative method will be
described to construct encoder-efficient AR4JA codes. Some examples of these codes will be presented. So
far, the codes designed to be encoding-aware do not exhibit the same BER performance as those defined
in the current CCSDS specification, but the design of such codes using the progressive edge growth (PEG)
or approximate cycle extrinsic–message–degree (ACE) algorithms [7,8] with certain restrictions may be
a good choice for future designs. Finally, in Section IV, three hardware architectures will be compared
in terms of area requirements (including XORs, ANDs, flip-flops, and memory requirements).

II. Encoders for the Current AR4JA Codes

Permuting the code symbols does not alter the BER performance of the code. Reordering of the code
symbols is accomplished by permuting the columns of the H matrix and by permuting the columns of
the G matrix to match. This technique can be used to reveal a desired structure in the H matrix.

With this idea in mind, we first define three groups (designated 1, 2, and 3 in Fig. 3) of 4M columns
in the original H matrix, as shown in Fig. 3. If we now permute these groups, the result shown in Fig. 4
is obtained. We call this Code 1′. The matrix displayed in Fig. 4 has an approximate lower triangular
structure, i.e., above a certain diagonal on the right side of the matrix, all the elements are zeros. In [2],
Richardson and Urbanke partition an H matrix into six sub-matrices, as shown in Fig. 5, with dimensions

2

90

0

Fig. 3. H matrix for Code 1.

20 40 60 80 100 120 140 160

80

70

60

50

40

30

20

10

0
1 2 3

90

0

Fig. 4. Modified H matrix for Code 1 .

20 40 60 80 100 120 140 160

80

70

60

50

40

30

20

10

0
3 1 2

A B

C D E

T

0

g

m g

n m m gg

Fig. 5. Richardson and Urbanke s partition of an approximate lower
triangular parity-check matrix into sub-matrices [2].

3

as indicated. The upper-right sub-matrix T is a lower triangular matrix, and all of the elements on the
diagonal are ones. If we take a look at the H matrix defined in Fig. 4, we can see that it can be partitioned
to match the block matrix shown in Fig. 5. The resulting sub-matrices A, B, C, D, E, and T are displayed
in Fig. 6.

It is not the aim of this document to go through the equations of Richardson and Urbanke’s encoding
method, and we refer the reader to [2] as a guide for these equations. Here we only summarize the main
expressions to calculate the parity bits, keeping the same notation used in [2].

Let

φ = ET−1B + D (1)

Due to the design of AR4JA codes, T is the identity matrix, which simplifies the calculations, and

φ = EB + D (2)

Let

pT
1 = φ−1(ET−1A + C)sT (3)

= φ−1(EA + C)sT (4)

where p1 represents the punctured parity symbols and s represents the vector of input bits to be encoded.

Finally, we can compute the parity symbols to be transmitted as

pT
2 = T−1(AsT + BpT

1) = AsT + BpT
1 (5)

Encoding by this method involves several sparse matrices but only one dense matrix, φ−1, of size 4M×4M .
This matrix can be precomputed, and encoding requires multiplying this matrix by a vector.

90

0

Fig. 6. H matrix for Code 1 partitioned into the sub-matrices
defined in [2].

20 40 60 80 100 120 140 160

80

70

60

50

40

30

20

10

0

A

C D

T

B

E

4

III. Encoding-Aware Code Design

In this section, we describe a method for designing hardware-aware codes similar to the AR4JA code,
and encoders for the codes. We will also provide two examples and the steps for obtaining the desired
H matrix.

Some code standards, such as 802.16e and 802.11n, include LDPC codes that are easily encodable by
using the Richardson–Urbanke method. They provide an easy way of calculating the circulant matrices
on the right side of the parity-check matrix (the parity part) in such a way that φ is the identity matrix,
so that its inverse is also.

The scheme proposed is displayed in Fig. 7 [6]. On the right, the architecture used for these codes is
displayed. In this figure, shaded squares represent circulant sub-matrices and blank squares zero matrices.
The shaded squares filled with a “0” represent the identity matrix, and those filled with an “a” represent
the identity matrix circularly shifted to the right “a” times. From Eq. (1), with B, D, E, and T as shown,
we find φ−1 is the identity matrix, and this greatly simplifies Eq. (3). On the other hand, the fixed
architecture of the right side and the number of degree-two variable nodes degrade the BER performance.

In the remainder of this section, we try to obtain the same benefits in terms of encoder complexity
without significant degradation in the BER performance of the code. The idea is simple: we wish to keep
the code’s protograph unchanged, keep T as the identity matrix, and obtain a matrix φ = EB + D that
is either the identity or that has a sparse inverse, without reducing E, B, and D to simple expressions
(degree 1 and/or identity matrices), as was done in previous work. We present two examples of this idea
as well as the steps to follow in order to achieve a sparse φ−1. For each example, we then consider the
resulting BER performance.

A. Example 1: φ Matrix Orthogonal

As a first example of the idea, we modify Code 1′, shown in Fig. 6, to form Code 2. We aim to keep E
and D unchanged and to modify only the last 4M rows of B; an alternative would be to modify E as
well.

For notational convenience, circulant matrices can be represented as powers of the indeterminate x [1].
The identity matrix is denoted x0 = 1, its first right circular shift is x1, and so on, with xM = x8 = x0.
Using this notation,

E =

⎡
⎢⎣

0 0 0 0 x7 x1 0 0
0 0 0 0 0 x3 x6 0
0 0 0 0 0 0 1 x4

0 0 0 0 x5 0 0 x6

⎤
⎥⎦

0a

a

0 0
0 0

0 0
0
0 0

0 0
0 0

0 0
0

0 0

C D

A B

E

T

s p1 p2

Fig. 7. H matrix suitable for Richardson and Urbanke encoding.

5

and

D =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎦

For B, we keep the matrix dimensions and the first 4M rows the same as in the original matrix. In the
last 4M rows, we keep the locations of the nonzero sub-matrices, but modify the particular choices of
these circulants to achieve a sparse φ−1. That is,

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 x1

1 1 0 0
0 1 1 0
0 0 1 1
xa xb xc 0
0 xd xe xf

xi 0 xg xh

xk xl 0 xj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the unknowns a through l are to be determined. In this example, we aim to pick those unknowns
so that φ has the form

φ2 = EB2 + D =

⎡
⎢⎣

0 0 0 xδ

xα 0 0 0
0 xβ 0 0
0 0 xγ 0

⎤
⎥⎦

where α, β, γ, and δ are also to be determined. Substituting,

EB2 =

⎡
⎢⎣

x7+a x7+b + x1+d x7+c + x1+e x1+f

x6+i x3+d x3+e + x6+g x3+f + x6+h

xi + x4+k x4+l xg xh + x4+j

x5+a + x6+k x5+b + x6+l x5+c x6+j

⎤
⎥⎦ =

⎡
⎢⎣

1 0 0 xδ

xα 1 0 0
0 xβ 1 0
0 0 xγ 1

⎤
⎥⎦

From the diagonal elements, we find a = 1, d = 5, g = 0, and j = 2. From these, the rest of the values
are found to be b = 7, c = 5, e = 3, f = 1, h = 6, i = 4, k = 0, and l = 6.

With these choices, φ2 = EB2+D is an orthogonal permutation matrix, so φ−1
2 = φT

2 and the hardware
requirements needed for an encoder using φ−1

2 are greatly reduced. In Fig. 8, φ−1
2 is compared with φ−1.

1. BER Performance. The problem with this example is that to obtain a main diagonal full of 1’s
we have created a dependency between B2 and E in which many of the circulants of B2 are transposes
of circulants in E. This causes a large number of short cycles (length-4 cycles) between B2, E, D, and T
that lead to a great degradation of BER performance.

B. Example 2: φ Matrix Avoiding Length-4 Cycles

In this example, we add design constraints to eliminate length-4 cycles in H. This comes at the cost
of an increased complexity in the resulting matrix φ, although it still possesses a sparse inverse. As in
the previous example, we choose to modify only the choice of circulants in the bottom half of B.

6

0 5 10 15 20 25 30

30

25

20

15

10

5

0

Fig. 8. Comparison of (a) φ−1 of the modified code and (b) φ−1 of Code 1.2

0 5 10 15 20 25 30

30

25

20

15

10

5

0
(a) (b)

In order to avoid length-4 cycles, we have to check where the modification of the circulants of B can
cause these cycles. The design of the bottom half of B can introduce three categories of length-4 cycles,
in the locations shown by rectangles X, Y and Z in Fig. 9. Length-4 cycles in category X are caused by
relationships between the circulants in the bottom half of B, the lower-right quarter of T , the right half
of E, and D. For analysis, we collect those four 4M × 4M matrices into a new matrix, X:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xa xb xc 0 1 0 0 0
0 xd xe xf 0 1 0 0
xi 0 xg xh 0 0 1 0
xk xl 0 xj 0 0 0 1
1 0 0 0 xm xn 0 0
0 1 0 0 0 xo xp 0
0 0 1 0 0 0 xq xr

0 0 0 1 xt 0 0 xs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

To avoid length-4 cycles in X, it turns out that there are constraints only on the circulants that lie on
the main diagonal: (a + m) modM �= 0, (d + o) modM �= 0, (g + q) modM �= 0, and (j + s) modM �= 0.

Similarly, length-4 cycles in category Y are caused by relationships between the circulants in the
bottom half of B, the lower-right quarter of A, the right half of C, and D. We collect those into the
matrix Y :

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xa xb xc 0 1 0 0 0
0 xd xe xf 0 1 0 0
xi 0 xg xh 0 0 1 0
xk xl 0 xj 0 0 0 1
1 0 0 0 0 0 xu xv

0 1 0 0 xw 0 0 xx

0 0 1 0 xy xz 0 0
0 0 0 1 0 xψ xω 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

7

90

0

Fig. 9. Locations of length-4 cycles in the parity-check matrix
for Code 2.

20 40 60 80 100 120 140 160

80

70

60

50

40

30

20

10

0

Z

XY

To avoid length-4 cycles in Y , there are eight restrictions on the circulants that may be chosen:
(b + w) modM �= 0, (c + y) modM �= 0, and so on.

Length-four cycles in category Z are contained entirely within the bottom half of B, which we denote Z:

Z =

⎡
⎢⎣

xa xb xc 0
0 xd xe xf

xi 0 xg xh

xk xl 0 xj

⎤
⎥⎦ (6)

It is necessary that this matrix not be composed of circulants that form short cycles between them. This
fact results in six restrictions: (a − k + l − b) modM �= 0, (b − d + e − c) modM �= 0, and so on.

In total, we have 18 constraints on the circulants that can be chosen for the bottom half of B in order
to avoid adding length-4 cycles to H. Much more demandingly, we wish to choose those circulants so
that φ = EB + D has a sparse inverse. In this example, we aim to choose circulants so that φ has the
form

φ3 = EB3 + D =

⎡
⎢⎣

P 0 Pxη xα

xβ P 0 Pxθ

Pxε xγ P 0
0 Pxζ xδ P

⎤
⎥⎦ (7)

where P = 1 + xM/2. This matrix has the sparse inverse

φ−1
3 =

⎡
⎢⎣

Pxθ−α−β x−β Pxβ−γ 0
0 Pxε−β−γ x−γ Pxγ−δ

Pxδ−α 0 Pxζ−γ−δ x−δ

x−α Pxα−β 0 Pxη−δ−α

⎤
⎥⎦

We start with the AR4JA code of size (n = 2048, k = 1024) given in the CCSDS standard, for which
M = 128, DAR4JA is the identity matrix, and

8

EAR4JA =

⎡
⎢⎣0512×512

xm xn 0 0
0 xo xp 0
0 0 xq xr

xt 0 0 xs

⎤
⎥⎦ =

⎡
⎢⎣0512×512

x115 x30 0 0
0 x59 x102 0
0 0 x1 x69

x94 0 0 x99

⎤
⎥⎦

Substituting these values of D and E into Eq. (7), we can solve to find a unique solution for the bottom
half of B with the form given in Eq. (6). It is

Z3 =

⎡
⎢⎣

xM/2−m xM/2−o+n−m x−q+p−o−m+n 0
0 xM/2−o xM/2−q+p−o x−s+r=q−o+p

x−m+t−s−q+r 0 xM/2−q xM/2−s+r−q

xM/2−m+t−s x−o+n−m−s+t 0 xM/2−s

⎤
⎥⎦ =

⎡
⎢⎣

x77 x48 x85 0
0 x5 x106 x12

x76 0 x63 x33

x72 x107 0 x93

⎤
⎥⎦

We make this modification to the sub-matrix BAR4JA from the CCSDS code and call the result Code 3. In
Fig. 10, φ−1

AR4JA and φ−1
3 are compared. Because φ−1

3 remains sparse, the encoding procedure is simplified
in terms of memory consumption, hardware consumption, or both, depending on the architecture used
to encode.

1. BER Performance. With this architecture, the BER performance of Code 3 is 0.5-dB worse than
the original AR4JA code, but much better than Code 2. A further study of this code revealed that there
were some codewords of low weight caused by information frames of weight 2 (the minimum codeword
weight found was 28, far from the 78 that is believed to be the minimum weight of the original AR4JA
code).

C. General Design Method

The previous example suffered a 0.5-dB performance loss compared to the original AR4JA code.
This may be the result of leaving most of the parity-check matrix H unchanged and of restricting our

0 100 200 300 400 500

300

250

200

150

100

50

0

Fig. 10. Comparison of (a) φ−1 and (b) φ−1.AR4JA 3

0 100 200 300 400 500

300

250

200

150

100

50

0
(a) (b)

350

400

450

500

350

400

450

500

9

modifications to only a 4M ×4M sub-matrix of H. In order to improve the BER performance, we suggest
the following method for designing a complete parity-check matrix, while keeping the same protograph:

(1) Choose T to be the identity matrix.

(2) Choose B, E, and D so that φ−1 = (EB + D)−1 is sparse and easy to obtain from φ.

(3) Select the rest of the circulant matrices using the PEG algorithm [7] and the ACE metric [8]
to minimize the presence of short cycles and stopping sets in H.

IV. Hardware Architectures

We now present a comparison between three different encoder architectures in terms of latency and
the amount of circuitry required, measured as the number of flip-flops and AND and XOR logic gates and
the amount of memory used. The first encoder performs a matrix multiplication by the dense generator
matrix G, the second uses the algorithm developed in Section II, and the third is an encoder that takes
advantage of the sparse φ−1 of the codes in Section III.

A circuit to multiply a dense matrix of circulants by a vector was developed in [5] and is shown in
Fig. 11. This circuit consists of one recursive convolutional encoder per row of circulants. The boxes along
the top of the figure are configured with the first column of the matrix (perhaps stored in a memory),
and as the vector elements are shifted in serially, each is multiplied by this column, and the result is
accumulated and circularly shifted. After the multiplication has proceeded through the first column of
circulants, the boxes along the top are reconfigured for the second column of circulants, and the process
is repeated until the entire matrix multiplication is complete. To multiply a matrix of size J × K by a
vector of length K, this method requires J registers, J XOR gates, and J AND gates.

On the other hand, when multiplying a sparse matrix by a vector, the sparseness of the matrix can
be exploited to reduce the logic required. Moreover, for a matrix that is composed of circulants, there is
only one nonzero entry in each row or column of each sub-matrix. Therefore, the following method uses
only one XOR gate for each one of the circulants.

As in the dense matrix multiplier described earlier, the sparse matrix multiplier is based upon a set of
recirculating shift registers, one per row of circulants. Unlike the dense matrix multiplier, we use a single
XOR gate per shift register, and connect it to the position necessary to achieve the desired circulant
multiplication. For each successive circulant, the XOR gate may need to be connected to a different
position in the shift register, and this list of positions may be tabulated in a memory.

An example of sparse matrix-by-vector multiplication is shown in Fig. 12, and the corresponding circuit
is shown in Fig. 13. As the multiplication process proceeds column by column, the multiplexer below each

INPUT
MESSAGE

OUTPUT
CODEWORD

RECURSIVE
CONVOLUTIONAL ENCODER

RECURSIVE
CONVOLUTIONAL ENCODER

Fig. 11. Circuit to multiply a dense matrix of circulants by a vector.

10

1

1

4 N

8 N
8 N

60

50

40

30

20

10

0

3020100

4 N

Fig. 12. Example showing the multiplication of a sparse
matrix by a vector.

INPUT

CONTROL

N

Fig. 13. Circuit for performing the sparse matrix multiplication in Fig. 12.

shift register, and the demultiplexer above it, are used to connect the XOR gate to the appropriate stage
of the shift register. The sizes of the multiplexer and demultiplexer are determined by the number of
distinct non-zero circulants in the matrix row that they implement. They are controlled from a memory
in which the circulant offsets are tabulated.

The sparse matrix consists of macro-rows, and we call the number of distinct circulants in a macro-
row its degree. The amount of memory required to control the multiplexers in this multiplier is equal to
btc×mr×dg bits, where mr is the number of macro-rows, dg is the maximum degree of the macro-rows, and
btc is the number of bits required to select the proper circulant from the dg choices: btc = ceil

(
log2(dg)

)
.

If the macro-rows have different degrees, the equation is adjusted accordingly.

Table 1 compares the complexities of three encoders. Each takes a vector of k information bits and
computes 2m/3 parity symbols for transmission, and perhaps m/3 additional punctured parity symbols
if necessary as an intermediate result. The first encoder directly computes the 2m/3 transmitted parity
symbols by multiplying the vector of information bits by the dense k × (2m/3) generator matrix, as
the m/3 punctured symbols do not have to be calculated. Using the multiplier of Fig. 11, this requires
2m/3 flip-flops, 2m/3 AND gates, and 2m/3 XOR gates, as shown in the first row of Table 1. The
multiplier also requires knowledge of the first row of each M ×M circulant, thus requiring 2mk/3M bits
of memory.

11

Table 1. Complexity comparison between three different encoder architectures.

Encoder architecture Step MUXs Flip-flops ANDs XORs Memory

1. Multiply by dense G —
2m

3

2m

3

2m

3

2mk

M

2. Richardson–Urbanke Step 1.
[
φ−1(EA + C)

]
sT —

m

3

m

3

m

3

m

3

k

M

Step 2. AsT 2 × 8
2m

3
— 8

h

Step 3. BpT
1 2 × 8

2m

3
— 8

Total 32
5

3
m

m

3

m

3
+ 16 h +

m

3

k

M

3. Sparse φ−1 40
5

3
m — 20 h

As described in Section II, the second encoder proceeds in three steps. First, with the precomputed
dense matrix φ−1(EA + C) of size m/3 × k, it computes p1 from the matrix multiplication in Eq. (4).
Second, it performs the sparse matrix multiplication AsT , where A is of size 2m/3 × 2m/3. Third, it
computes BpT

1 , where B is a sparse matrix of size 2m/3×m/3, and adds this to AsT to find p2 according to
Eq. (5). Each sparse multiplication requires eight XOR gates, eight multiplexers and eight demultiplexers
(collectively MUXs), 2m/3 flip-flops, and some small amount of memory, simply denoted by h in Table 1.
The first and second steps could be performed simultaneously.

The codes developed in Section III are encoded in the same way as described in Section II, but
they have a sparse φ−1. This means that the encoder’s first step can be performed as a sparse matrix
multiplication rather than a dense one. The sparse multiplier requires four XOR gates, four multiplexers
and demultiplexers, m/3 flip-flops (as in the dense case), and a small amount of memory. The second
and third steps of the encoding process remain unchanged, giving the total in the last row of Table 1.

Several variations on the second and third encoders are possible, so there may be improvements possible
to those encoders described here. For the third option, no dense matrices need be stored, which greatly
reduces the memory consumption. This even allows the possibility of storing only H, and computing φ−1

in hardware, if H is required for some other application, such as a decoder in the same field programmable
gate array.

V. Conclusions

An alternative way of encoding AR4JA codes proposed for CCSDS 131.1-O-2 [1] has been shown. No
changes to the code are made, and the method allows a low-memory-consumption architecture, saving
around 33 percent of the memory used by the encoder suggested in that document. It also reduces the
number of gates used by increasing only slightly the number of registers used. This proposal is quite
flexible and allows some other architectural alternatives.

Moreover, methods are proposed for constructing modified versions of the rate-1/2 AR4JA code with
performance close to the original code, while allowing the use of encoders with far less memory consump-
tion.

12

Acknowledgments

The authors would like to express their thanks to Jon Hamkins for his valuable
comments during the realization of this work. Also, thanks go to Dariush Divsalar
for the simulations that led to the improvements in the proposed method. Finally,
special thanks go to Victor Fernandez and Pablo Sanchez for their invaluable con-
tributions as advisors and their continuous checking.

References

[1] CCSDS 131.1-O-2, “Low Density Parity Check Codes for Use in Near-Earth and
Deep Space Applications,” The Consultative Committee for Space Data Systems,
Orange book, Issue 2, September 2007.
http://public.ccsds.org/publications/archive/131x1o2.pdf

[2] T. J. Richardson and R. L. Urbanke, “Efficient Encoding of Low Density Parity
Check Codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 638–656, 2001.

[3] “Digital Video Broadcasting (DVB) Second Generation Framing Structure for
Broadband Satellite Applications,” European Telecommunications Standards In-
stitute (ETSI), EN 302 307 V1.1.1.

[4] “Draft IEEE Standard for Local Metropolitan Networks—Specific Require-
ments. Part 11: Wireless LAN Medium Access Control (MAC), and Physi-
cal Layer (PHY) Specifications: Enhancements for Higher Throughput,” IEEE
P802.11n/D10, March 2006.

[5] K. Andrews, S. Dolinar, and J. Thorpe, “Encoders for Block-Circulant LDPC
Codes,” Proc. IEEE International Symposium on Information Theory, Adelaide,
Australia, pp. 2300–2304, 2005.

[6] S. Myung, K. Yang, and J. Kim, “Quasi-Cyclic LDPC Codes for Fast Encoding,”
IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2894–2901, 2005.

[7] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Progressive Edge-Growth Tanner
Graphs,” IEEE Proc. Globecom’2001, San Antonio, Texas, November 2001.

[8] T. Tian, C. Jones, J. Villasenor, and R. Wesel, “Selective Avoidance of Cycles
in Irregular LDPC Code Construction,” IEEE Trans. Communications, vol. 52,
pp. 1242–1247, August 2004.

13

